A Dust Cloud of Ganymede Maintained by Hypervelocity Impacts of Interplanetary Micrometeoroids
نویسندگان
چکیده
A dust cloud of Ganymede has been detected by in-situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius = 2, 635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite’s surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.
منابع مشابه
Impact-Generated Dust Clouds Surrounding the Galilean Moons
Tenuous dust clouds of Jupiter’s Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the dust clouds surrounding the moons by their impact direction, impact velocity, and ma...
متن کاملThe lunar dust environment
Each year the Moon is bombarded by about 10 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphere...
متن کاملInvestigation of the dust environment around Europa
Space in the vicinity of atmosphereless bodies inthe Solar system is often populated by dustoriginating from the surface. Fragments of thesurface are ejected mostly due to hypervelocitymeteoroid impacts. It is also possible that materialfrom sub-surface layers may be vented throughcracks in the ice (as detected near Enceladus).The understanding of Europa's dust c...
متن کاملGeo Debris and Interplanetary Dust: Fluxes and Charging Behavior
In September 1996, a dust/debris detector: GORID was launched into the geostationary (GEO) region as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID’s particle data to identify and separate the space debris to interplanetary dust parti...
متن کاملDust en-route to Jupiter and the Galilean satellites
Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measurements with the dust detectors on board the Ulysses and Galileo spacecraft have for the first time demonstrated the electromagnetic interaction of char...
متن کامل